Welcome Guest!
 austin-bikes
 Previous Message All Messages Next Message 
The big picture as defined by stubborn facts and trends  rcba-@eden.infohwy.com
 Oct 21, 2003 17:36 PDT 

Some may complain this stuff below is off-topic, but it isn't really. Its conclusions are
strongly supportive of a more important role for bicycles in the future, as it mentions
near the bottom.

Its really a wise and scholarly critique of the point of view that we can technofix our way
out of certain economic and energy constraints driving us toward a more localized
economy. Capitalism, by its nature of the continuous investment of capital, depends on
exponential growth on an already over-populated, overstressed planet for its survival.

You don't have to agree of course, but assuming that you can find important flaws in the
argument, I think it is true anyhow. Try to think of how any world based on windmills and
solar cells could support anything like the current population and tonnage of trade and
industry. When you run the numbers, there is no plausible way to get there; it just
doesn't compute. Assuming we don't have a nuclear war over oil in the meantime, it
means your grandkids are likely going to be riding the same bicycles that the Chinese
are now rapidly trying to abandon.

The Chinese are getting the money to buy the currently cheap oil they use for
manufacturing by selling us stuff we don't make here in the USA anymore. Try to extend
these trends very far into the future and see what happens. Its a house of cards.

Also pick up a copy of Ken Martin's feature article on energy in the latest "Good Life"
free magazine, (around town much like the Chronicle).

[BTW, anyone who doesn't know Ken and his wife Rebecca and their local contribution
to friendly, progressive, quality journalism in Austin are missing out on an important part
of what makes Austin a good place to live.] -- Roger



                              *********************************

http://www.arts.unsw.edu.au/tsw/D50NatCapCannotOvercome.html


Natural Capitalism Cannot Overcome Resource Limits

Ted Trainer, Social Work, Univ. of NSW, Australia.

Abstract: The dominant conventional assumption is that industrial-affluent-consumer
societies can be made sustainable by technical advances which dramatically reduce
resource use and environmental impacts per unit of output, and thereby avoid any need
to abandon the present commitments to affluent living standards and economic growth.
Two influential supporters of this general position are discussed, viz., Julian Simon and
Amory Lovins. Most attention is given to the latter's assumptions regarding energy,
which it is concluded are seriously mistaken. This critical discussion reaffirms the limits
to growth perspective. It is concluded that sustainability can only be achieved by radical
change to a fundamentally different society, identified as The Simpler Way.

Keywords: Natural Capital, Simon, Lovins, sustainability, limits to growth, alternative
energy, technical advance, renewable energy.

Since the publication of The Limits to Growth by Meadows et al. (1972) discussion of the
global situation has been divided into two camps. The dominant and conventional
position has been that industrial-affluent-consumer society can continue without major
change in its fundamental goals and operating principles, such as its commitments to
high material living standards, the market system, private enterprise, globalisation and
economic growth. Within this position it is usually acknowledged that there are
formidable problems, especially ecological deterioration, but it is assumed that these
can be dealt with adequately by technical advance, tougher legislation and the normal
adjustments of the market place. For example it is argued that as some resources
become more scarce it is assumed that their prices will rise making it economic to shift
to substitutes or to increase their production.

The minority position follows Meadows et al. in arguing that there are limits to growth
and that the multi-dimensional global predicament (including ecological, Third World,
equity, conflict and social cohesion problems) cannot be resolved without radical
change in some of the fundamental social principles, especially the abandonment of the
commitments to high material living standards, to the market system and to economic
growth. According to this perspective plausible technical advances cannot cut the
resource use and ecological impact per unit of output sufficiently to sustain present rich
nation levels of consumption or gross economic activity, or extend these to all the
world’s people, let alone enable constant growth in the volume of production and
consumption. This is therefore describable as a "technical-fix" position (although it is
sometimes assumed that the market rather than technical change will bring about the
necessary adaptations.)

Julian Simon and Amory Lovins have probably been the two most influential supporters
of the general "technical-fix" position. The nature of their contributions differ
considerably. Lovins provides much more detailed technical arguments and proposals
regarding impact reducing ways. Most of the following discussion will focus on the
recent highly popular presentation with P. Hawken and H. Lovins, entitled Natural
Capitalism (1999).

Julian Simon. (Note 1.)

Simon’s two most influential works have been The Ultimate Resource (1981) and with
Herman Khan The Resourceful Earth, (1984). The concern in the following brief
discussion is primarily to draw attention to the curious forms of argument evident in
these works. Their weaknesses tend not to be recognised by many who are impressed
by Simon"s reputation and claims but who have not read his arguments.

Simon’s core logic is simply to analyse solely in terms of previous dollar cost trends.
"Historical trends are the best basis for predicting the trends of future costs." (1981, p.
27.) Both Simon’s main books examine data on resource, energy, land etc. costs and
find that in virtually all cases costs have fallen continuously, meaning that they have
been becoming less scarce. This is taken to be a sufficient case for the claim that
scarcities will not be encountered in the future.

The insufficiency of this general approach would seem to require little demonstration.
Firstly the evaluation of some of the most urgent limits to growth concerns does not
directly involve dollar cost calculations, most obviously regarding whether or not the
greenhouse problem or the loss of biodiversity are becoming critical, or whether our
ecological footprint is unsustainable. More importantly, often the concern is that there
might be good reasons for believing that the future will be radically different from the
past. This is especially so with respect to petroleum supply (see below.) In general the
appropriate considerations are to do with our understanding of the systems in question
and with whether or not these involve factors likely to make the future unpleasantly
unlike the past. In many areas there are good reasons to think the future will indeed be
quite different from the past, and in general Simon flails to deal adequately with these
considerations.

Simon does not acknowledge the extent to which his optimism depends on access to
large quantities of cheap energy. His discussion of energy is probably the least
satisfactory element in The Ultimate Resource. It is actually difficult to discern what his
argument is, but the conclusion is clear enough; "When will we run out of energy?
Never." (1981, p. 90.) Again the inappropriate method of looking backward is used.
‘"The most reliable method of forecasting the future costs and scarcity of energy is to
extrapolate the historical trends of energy costs…" (1981, p. 90.) After a flimsy
discussion making little reference to estimated energy resources we are told, "In brief,
there is no compelling theoretical reason why we should ever run out of energy, or even
why energy should be more scarce and costly in the future than it is now." (1981, pp.
100-101.) Reasons for regarding energy as setting impossible problems for industrial-
affluent-consumer society, and for seeing it as the issue most seriously undermining
Lovins' as well as Simon's position are detailed below.

Regarding the general ecological problem, Simon simply asserts that in general the
situation is improving. The discussion is superficial and involves some strange
assumptions, notably that the best index of pollution levels is human life expectancy,
and as this is generally improving we have no need to worry about threats to the global
ecosystem. He gives little or no attention to the most serious threats to the global
ecological systems, such as from the greenhouse problem, the loss of biodiversity or the
disruption of the nitrogen, carbon and phosphorus cycles, which have virtually no
connection with present life expectancy rates. Simon was mistaken in claiming that no
atmospheric temperature rise would be detected before 2000. (1981, p. 293.)

Simon’s analysis of land availability also reveals noteworthy reasoning. His basic
argument is that "…as the poor countries get richer…the number of people needed to
work in agriculture to feed the rest of the population will begin to fall - even though the
population gets bigger…So much for a long-run crisis in agricultural land caused by
population growth!" (1981, p. 227.) His point is that the absolute number of farm workers
per unit of land decreases, which "…makes it clear that the combined increases of
income and population do not increase pressure on the land…" (225.) But obviously the
number of agricultural workers per acre is no indicator of "pressure on the land" In fact,
modern agriculture with its very low demand for labour can be far more environmentally
destructive than traditional labour-intensive agriculture.

The latter part of Simon’s book contains a lengthy series of arguments in favour of
population growth. People are "…the ultimate resource". The more of them we have the
more good things become possible. Three remarkable arguments are presented. Simon
dwells firstly on the improvements that have taken place as population has grown.
"Population growth clearly leads to an improved transport system" (p. 193.) Regarding
the availability of squash courts on his campus he explains, "If there comes to be more
people there will immediately be increased demand…" and "…more and better courts
will be built." (1983, p. 195.) It might be that unit costs for providing more courts decline
but obviously total resource and environment impacts on the planet increase.

Simon also argues that the more people there are, the more knowledge and innovation
that will be generated, hence the more technical advance…and thus the more resource
savings…and indeed "…this contribution is large enough in the long run to overcome all
the costs of population growth." (1981, p. 196.) Thus we seem to be expected to believe
that as the American population doubled this facilitated innovations which actually
reduced total resource and environmental impacts. However this has actually increased
considerably.

Amory Lovins.

For some 30 years the works of Amory Lovins have probably provided more substantial
support for the conventional "technical fix" position than any other author. The recent
widely acclaimed work with H. Lovins and P. Hawken, Natural Capitalism (1999),
constitutes the latest detailed presentation of Lovin's general position. The book
explicitly reaffirms the dominant assumptions that the major global problems can be
solved by the implementation of better technologies and that there is no need to
consider radical reduction in experienced "living standards" or abandon economic
growth. The claim is in effect that we will be able to buy as many goods and services,
drive as much, have current large and air-conditioned houses, travel by air as much,
have as much international trade, air freight and shipping, etc, as we do now, because
better technology will enable continuation of rich world experienced lifestyles through
dramatic reduction in the associated resource demand and environmental impact per
unit of product or experience consumed. Indeed Hawken, Lovins and Lovins argue that
the technical changes will enable us to save the environment while making more money
and raising the GDP. (p. 243.)

It is important to make clear the distinction between the "consumption" of services and
experiences and the consumption of resources. Hawken, Lovins and Lovins make the
valuable point that what matters is not having petrol to use but the ability to drive from
place to place, it is not acquiring and consuming the materials that make up a fridge but
access to the cooling service that a fridge provides, and it is not acquiring and
consuming carpet materials but experiencing the service that carpets provide. Their
argument is that consumption of these services and experiences can be maintained and
increased while the overall consumption of resources and ecological impacts are
markedly reduced . Thus we can avoid the confusion that would be generated by the
statement "Hawken, Lovins and Lovins do not think consumption has to be reduced."

Lovins' arguments have met with remarkably little critical analysis and have been widely
accepted, reinforcing the belief that the global problem is essentially due to the
inexcusable failure to adopt the new technologies that are already available. Few
contributors to the discussion of the global situation have so effectively reinforced the
belief that we do not need to undertake dramatic reduction lifestyles and economic
output, and the belief that continued economic growth is possible and desirable.

Natural Capitalism restates the general analysis Lovins has put forward in various
publications, most recently in Factor Four. (Von Weisacker and Lovins, 1997.) It does
not seem to add new lines of argument but it does provide up to date evidence in
several of the areas his works have previously discussed. Its many detailed examples
make it appear to be a weighty and convincing case driving home its basic thesis that in
general sufficient answers already exist and that technical advance will soon improve on
these. Indeed the book concludes that we have good reason to expect that the
economic value that can be produced from a given input of resources can be improved
by a factor of 10, and possibly much more.

It is beyond dispute that there is merit in increasing general understanding of the gains
that can be made in the efficiency of resource use, and the book is likely to encourage
and enable many firms to consider options which they might otherwise not have
recognised. In many cases it is evident that moving to ways that reduce materials and
energy use and environmental impact do not necessarily involve higher production
costs. Indeed sometimes considerable cost reductions come with the shifts. The book is
also valuable in encouraging whole system thinking, as distinct from the consideration of
isolated elements. In other words, sometimes a complete rethinking and reorganisation
of an approach enables total resource costs to be cut. A good example of this is in
moving from the supply of goods, such as carpets, to the supply of the service that the
goods provide (p. 139.) Thus some firms are now undertaking to maintain a carpeted
floor space, meaning that they monitor, repair and replace carpet tiles as appropriate,
and are thereby able to fully recycle the materials. The book contains many such
examples of sensible practice, and of the desirability of considering radically new ways
of meeting ultimate goals.

However when it comes to the fundamental thesis of the book Natural Capitalism is
surprisingly unconvincing. Their basic claim is "...that 90-95% reductions in materials
and energy are possible in developed nations without diminishing the quantity or quality
of the services that people want." (p. 176.) In fact Hawken, Lovins and Lovins say that if
the principles they are describing were applied everywhere "...they would reduce the
total flow of materials needed to sustain a given stock of material artefacts or flow of
services by a factor much nearer to one hundred, or even more..." p. 81. However, the
book falls far short of having established that technology can solve the problems facing
us and that radical change from affluent lifestyles and the current economy are not
necessary. There are two main lines of criticism, the first being to do with what the
possibilities Hawken, Lovins and Lovins discuss add up to, and the second being to do
with the energy assumptions underlying their analysis.

From specific to overall gains?

Most space within the book is given to particular products or processes which
demonstrate the potential for considerable savings in material and energy and/or
environmental impact. However in general most of the references are to reductions only
of the order of 50-80% i.e., up to a factor 4 reduction at best. For example, it is stated
that the energy used by motors could be halved. (p. 246.), cars could save 70-80% of
fuel now used and weigh one third to one half as much as present cars (p. 19.), and the
introduction of the hypercar would reduce US steel production, but only by 10%, (p.
378), while increasing use of some high energy materials, such as plastics and carbon
fibre. In general plastics are three times as energy intensive as steel. (Lawson, 1966.)
The city of Curitaba, Brazil, is held up as a glowing example of the new technologies,
but it is noted that the landfill volume has only been cut by one-sixth. (p. 301.)

It should be kept in mind that many of the references in the book are to US performance
where energy use per capita is almost twice the European and Japanese levels,
meaning that in general the associated reductions claimed to be possible would be
much less in most other developed countries. For instance the hyper-car will weigh 1000
lb, which is a considerable reduction for the US but is much less significant in
comparison with the present average weight of European and Japanese cars. Similarly
the high US and Australian energy consumption rates are in part due to the much longer
distances involved in these countries, for commuting, accessing shops, transporting and
importing and exporting, and for leisure and holiday travel. Thus per capita energy use
in these two high energy consuming countries could not so easily be cut to European
and Japanese levels.)

The basic problem Lovins' works sets here is to do with how representative are the
cases he discusses. It is one thing to focus on those instances where large reductions
are possible but there may be many others where only lesser or negligible gains are
likely. The question is what reduction can be made in the resource use and ecological
impact of the total economy, and little light is thrown on this unless the potential for
reductions in most of its components can be demonstrated and then added. Natural
Capitalism leaves us quite unclear about what the reductions discussed and implied
might add up to and therefore what proportion of current resource use and
environmental impact technical advance might be capable of bringing about. It certainly
does not provide a good case in support of the above claim that overall factor 10
reductions can be made.

In this context the discussion of specific products and industries where spectacular
achievements are possible can be misleading. It is conceivable that where wastes are
within the potential access of a firm, as is the case with carpet supply, a high proportion
of the material can be recycled. However much waste is in a form wherein many metals,
plastics and organic substances are mixed together making retrieval of particular items
difficult. Even sorting before dumping leaves many items, such as electronic circuits, in
which materials have been integrated in ways that make sorting problematic. Again the
question is how indicative of the general situation are these selected impressive cases.

The early gains are the easiest.

There is also the danger of being misled by evidence on the gains that can be made at
the beginning of an era when serious attention is given to conserving, saving and
recycling. After decades of profligate energy and resource consumption stimulated by
extremely cheap petroleum, a form of energy that is of the highest quality (easily
produced, transported, high calorific value, etc.) it is not surprising that there are now
many areas in which enormous waste occurs and therefore in which there is huge scope
for reduction. However in general the gains become more difficult at an exponential rate.
To remove the first 10% of the pollutants from an engine exhaust might not be so
difficult, but it will be much more difficult to remove the sixth 10%, i.e., to go from 50% to
40% of the original pollutant output. (Hawkins, Lovins and Lovins rightly point out that
sometimes a jump to a different approach can enable a reduction associated with a
reduced cost.) As will be made clear below, a sustainable and just society will require
much more than a factor 10 reduction in total resource use and ecological impact, and it
is likely that the difficulties will escalate disproportionately with respect to such large
factor reductions.

Swings and Roundabouts.

Economists often enthuse about the increase in business turnover and GDP resulting
from, for instance the development of a new shopping mall, without attending to the
associated loss of business turnover on the part of the small shops sent bankrupt by the
opening of the mall, and the waste of their resources and labour. Similarly new
technologies that save materials or energy in one department often increase such costs
in others. For example Hawken, Lovins and Lovins claim that two-thirds of previously
wasted wood can be used if laminated beams are made, but the net saving should take
into account the increased cost of glues, handling, drying space, presses and other
machinery. Lawson (1996) states that the energy cost of laminated beams is 22 times
that of hardwood. Similarly changing from carpet supply to supply of carpet services will
reduce carpet throughput but it will also increase energy used by the service providers
in travel and transport.

Services.

Understandably Hawken, Lovins and Lovins focus their case on those industries and
instances where the most spectacular gains can be made. These tend to be in
manufacturing, transport, lighting and space heating. However 70-80% of rich world
national economic activity is within the service sector and the prospects for reductions in
resource use here are less abundant. Certainly there is scope for significant reduction in
lighting and space heating but consider the production and maintenance of short life-
time business machinery and the associated rate of scrapping of integrated materials in
items such as computer circuits, the provision of inks and toners, paper (given that the
computerised office has not led to large reductions in paper use), lifts, catering and
cleaning and the considerable energy costs associated with the need for frequent
servicing of high tech office equipment. Even purely knowledge-based services such as
auditing, economic analysis, insurance, banking, legal services and consulting bring
with them a large cost in offices, equipment and especially travel, both to work each day
and to overseas conferences and consultations. It should therefore not be surprising
that services actually account for 27% of the energy used in the Australian economy,
despite its heavy reliance on agriculture, mining and transport. (Common, 1995.) Care
needs to be taken regarding full accounting here; for example much energy in the
service sector is electrical, so the primary energy going into electricity generation should
be tallied.)

Especially important in the prospects for continuing economic growth in rich countries is
the tourism industry, probably the world's most rapidly growing industry. Like many
services this industry directly or indirectly involves intense use of materials and energy.
Similarly, much of the business done by the insurance, retail, construction and banking
industries is to do with production and sale of material items. Admittedly developments
of the kind Hawken, Lovins and Lovins describe can reduce the materials costs of the
item insured etc., but growth in the insurance industry will depend in large part on
growth in the volume of production of such items.

Figures on the magnitude of the service industry can be misleading in overlooking the
associated fraction of the domestic economy. To state that 27% of Australian energy
use is accounted for by the services sector does not take into account all the materials
and energy that the workers in this sector use in their domestic lives, and in their travel
to work, purchase of work clothing etc. Nor does it take into account the energy required
to build the premises, equipment, power supply and other infrastructures without which
there could be no service sector. The "emergy" accounting which is now beginning to
inform the discussion of energy costing, is instructive here. (Odum, 1996.) For example
the full energy cost of solar energy pant will not just include the energy required to
produce it, but also the energy required to produce all the factories, trucks, tools,
offices, etc. that were required to produce it and would not have been produced had the
solar plant not been built. Calculations of this kind can reveal that the construction of
plant that initially seems promising will actually consume more energy than it can deliver
in its lifetime. (Solar and wind plant appear to have acceptable though significant energy
payback times, although evidence from full emergy accounting is not yet available.)
There is debate as to whether nuclear and biomass energy have positive energy
accounts when emergy calculations are performed. If a similar comprehensive approach
was taken to the materials and energy costs of the service industries their real costs
would probably be surprisingly substantial. Hawken, Lovins and Lovins do not deal with,
let alone eliminate, the concern that for these sorts of reasons significant reductions in
the materials and energy costs of the service sector will be difficult.

Without this full accounting some important facts and claims can be quite misleading.
For example Hawken, Lovins and Lovins say of a particular carpet factory, "...the firm
expects not to use another drop of oil." (p. 141.) Presumably this only refers to energy
and materials inputs to carpet production and not to emergy costs. Presumably much oil
will still be used in building the plant, in transporting its workers every day and in
travelling to sites where carpet is to be maintained.

Counter-trends.

There are some forces at work now tending to increase unit resource and ecological
costs. For example goods are increasingly imported and transported a long way. As
agribusiness takes over and drives out small farmers serving local markets the energy
cost of food increases, because the markets are more global and distant, production
methods are less labour-intensive, and there is an increased need for packaging and
preserving. People are rapidly moving into cities now, where most per capita resource
costs are higher (partly because lifestyles are much less ecologically sustainable, for
example with respect to waste treatment.) They are opting for larger houses, and more
resource expensive goods and leisure, especially more travel. Many functions and
services once provided by local communities, such as care of aged and invalid people,
counselling and support, are increasingly provided by institutions and professional
people via more resource-expensive means. Because of diminishing returns in many
areas it is taking increasing effort to produce a given item or unit. For example the
shipping tonnage and energy use of the world’s fishing fleet has increased much more
rapidly than the world fish catch.

The automobile.

Hawken, Lovins and Lovins' case rests heavily on their analysis of the automobile. Their
argument is that the problems in this realm can be solved by shifting towards the
radically new kinds of vehicles now being built, or on the drawing board. The "hypercar"
involves light weight design and materials (few metals but mostly use of plastics), small
motors which power electric drives, regenerative braking, aerodynamic design to reduce
drag, and fuel cells. They make the important point that these car designs show how
savings in particular areas can multiply overall gains. For example reducing the weight
reduces the size of the engine needed, the braking capacity, and the road resistance,
and several of these gains feed back into even lower need for engine power and weight.

However hypercar development is not likely to make much difference to the major and
increasing fraction of the road transport energy consumption that is made up by
trucking. While it is possible to design cars that are much lighter, thereby reducing most
energy-related factors, energy demand in the trucking sector is determined primarily by
the loads being carried and these are increasing all the time, per vehicle and in the
aggregate. The same applies to the rapidly increasing volume of world trade.

Above all the vision Hawken, Lovins and Lovins put before us, involving the continuation
of automobile use on more or less the present scale, depends on the development of
the hydrogen powered fuel cell. Hawken and Lovins give no evidence of grasping the
difficulties in the general energy realm and they endorse the common assumption that
renewable energy sources can sustain industrial-affluent society and that the phasing
out or exhaustion of fossil fuels need pose no threat to affluent lifestyles nor consumer
economies nor economic growth. It is important therefore to outline here the basic
reasons for concluding that this common assumption, and Lovins’ long-standing
optimistic position regarding renewable energy sources, are seriously mistaken. (For an
initial statement of this position see Trainer 1995a.)

The energy problem.

There are numerous tasks for which various renewable energy forms are presently
viable and economic and there can be no doubt regarding the desirability of developing
and adopting renewable energy sources as rapidly as possible. However the two energy
forms that are most crucial for industrial-affluent society are electricity and liquid fuels,
and it will be argued here that these cannot be provided in the required quantities to
sustain rich world economies, or for all the world's people to rise to rich world lifestyles,
let alone in the quantities that economic growth would require.

Firstly it should be noted that hydrogen, the energy source that will power the fuel cells
in hypercars, is not an energy source; it is an energy carrier, similar to electricity, which
must be produced by transforming some original energy source. The important question
therefore is from what is hydrogen, or ethanol, to be produced in the very large
quantities that would be needed to sustain rich world economies, even assuming much
more efficient vehicles.

The most commonly assumed strategy involves the generation of hydrogen from
photovoltaic electricity. Following is a brief indication of the rarely discussed difficulties
this option involves. Despite making many claims for the viability of solar energy since
the 1970s Lovins has not dealt with these issues.

Solar hydrogen. Note 2.

The average annual solar incidence in the USA is approximately 1900 kWh per square
horizontal metre. However the USA is on average about 35 degrees North so the energy
falling on each square metre of PV panels tilted 35 degrees towards the equator would
be 2280 kWh/y. Kelly, (1993), claims PV operating efficiency in the field is 13%, as
distinct from nominal ratings deriving from ideal laboratory conditions. (Actual
performance experience indicates an even lower figure; see below.) The current
commercial energy efficiency for the conversion of electricity to hydrogen is 65%.

On these assumptions each square metre of solar collection area will produce 192kWh
pa, in the form of hydrogen, equivalent to 5.58 gallons of petrol. If fuel cells generating
the electricity required to drive hypercar motors at around 40-50% efficiency are
assumed, one square metre of collector will deliver energy to the wheels (or to
household electricity supply) equivalent to approximately 2.5 gallons of petrol p.a.

The US uses 277 billion gallons of petroleum p. a. (Youngquist, 1997, p. 187, and U.S.
Department of Energy, 2000.), although not all of it is used for transport. Therefore the
solar collection area necessary to provide this quantity of energy in the form of petrol
would be approximately 110 billion square metres, equivalent to 7% of the total US
cropland area.

The cost of PV generating capacity is currently about $5 per watt, wholesale, and
assuming 150W per square metre, the cost per metre is approximately $750. However
this is only the cost of the panels and the "balance of system" cost is typically as much
again per metre. (For systems that track the sun the cost is much higher although some
30% more energy is collected per metre.) Thus the cost of the PV collection system to
replace US petroleum use would be 110 billion x $1,500, i.e., $165,000 billion, or $5,500
billion pa. assuming the plant has a 30 year lifetime. This averages $21 per gallon of
petrol. (Note that the task of replacing US oil plus gas consumption would be 1.8 times
as great as just replacing oil.)

There are several considerations which have not been taken into account in the above
estimate, and which would greatly increase the real cost of fuel for the hypercar.

1. Operation and management costs for the generating plant, including keeping the
huge collection area clean, would have to be added.

2. The actual performance of PV systems in the field can be well below expectations
deriving from panel manufacturers specifications (13% assumed above) due to imperfect
alignment, dust and water vapour in the atmosphere, dust on panels, ageing of the cells,
losses in wiring and inverters, and heating. Nominal ratings derive from ideal laboratory
conditions. Data published in 1999 by BP Solarex (Corkish, 1999, Ferguson 2000a) on a
390 square metre system in the UK, an 805 square metre system in Switzerland, and on
a 7960 square metre system in Toledo, Spain, 40 degrees North, show that over
approximately three years the output of these systems was around 8-9% of the solar
energy received by the respective collection areas. This factor indicates that the above
cost figure based on a 13% performance efficiency might have to be multiplied by 1.5.

3. Energy dumping must also be taken into account. Electricity generated when batteries
are full is wasted. This is not so when small scale systems feed a small proportion of
demand into the grid, but there is a problem when a large fraction of demand is to be
met from solar sources. If a system is designed to meet winter demand then
approximately half the plant would be idle in summer when solar incidence is
approximately twice winter incidence. This effect can be accounted as a reduction in
actual PV cell efficiency in the field when performance is averaged over the year.

4. The energy cost of constructing the plant must be subtracted from its lifetime output
before we can discuss the amount of energy it would actually deliver. The energy
required for module production is usually claimed to be repaid in about 3 years (ignoring
the issues raised in points 2 and 3 above.) However the energy cost of constructing
large scale solar plant has been estimated theoretically at around one third of the (20
year) lifetime energy production of PV plant (Trainer, 1995a.) Ferguson (2000a) has
calculated from the above BP Solarex data on actual three year performance of plants in
Spain and Northumbria that the energy cost of system production would be between .25
and .38 of the energy these plants would generate in a 30 year lifetime. The full
"emergy" or net energy costs would be higher still. If the total emergy cost of plant
construction and operation is .3 of the energy it will deliver in its lifetime then the
magnitude and the cost of the plant to deliver a unit of energy is 1.5 times as great as
was assumed in the above estimate. (Roof-replacing PV panels or tiles have lower net
energy costs; see below.)

5. The plant will not operate all the time.

   6. The dollar and energy costs of the hydrogen producing plant, distribution systems
fuel cells and other infrastructures have not been taken into account. The construction
of fuel cell generating capacity equivalent to a 1000MW power station would be involved
in the system under discussion.

7. Provision would have to be made for large scale energy storage, which would be
more costly than for petroleum given the very low energy density of hydrogen, even in
liquid form. The above simplified analysis taking an annual 1900kWh/m2 solar incidence
does not deal with the problem of energy supply over the three winter months when
incidence in many regions would be in the region of half the summer average. This
again means either that generating capacity must be increased to meet winter demand,
and then lie idle in summer, or large scale hydrogen storage capacity must be built to
hold hydrogen generated in summer until it is needed in winter. (See therefore energy
dumping above.) Because of the low energy density of hydrogen the latter option would
not be realistic.

8. The cost of capital that would have to be borrowed to build the plant would probably
double the final cost from the addition of the costs due to all the factors noted above.

9. The cost assumed above for the energy used to build the energy-intensive plant and
infrastructure has been taken to be the present cost. This is significantly misleading. If it
becomes necessary to build such plants in large numbers, e.g.,when petroleum has
become scarce, this will have to be done using energy produced by these plants, i.e., at
a much higher cost than the cost of energy today. This factor would increase the cost
figures in all the above items.

Combining these ten factors would seem to indicate that the real price of electricity or of
fuel for fuel cells would be several times higher than that estimated above. Items 1, 2, 3,
4 and 6 above point to the need to multiply the initial $165,000t cost by 4.

These figures are so large that plausible technical advance, such as more efficient PV
cells and use of rooftop collection spaces (reducing balance of system costs), are not
likely to bring costs down to feasible levels.

When discussing roof-replacing PV panels Hawken, Lovins and Lovins say, "…this
innovation makes on-site solar power convenient and increasingly affordable for
unsophisticated users." (p. 97.) This statement is literally true, but highly misleading.
Consider the following approximate estimate.

Rooftop collection surfaces are fixed in orientation (as distinct from tracking systems)
and on average rooftops differ considerably from ideal orientation and are subject to
shading by other structures. It is likely that less than 40% of the surface of an average
house roof would have an orientation enabling effective use as a solar collector in
winter. Transmission loses are avoided but one then has the problem of whether the
solar incidence at the site where the house is located is adequate. For instance in
Sydney, 34 degrees South, in winter the solar incidence is only 2.78 kWh per day,
compared to 4.25kWh per square metre per day in central Australia. Solar energy on a
12 degree sloping roof would be 3.3kWh/m/d. Given this winter rate and the above 8.5%
energy efficiency of hydrogen generation, hydrogen energy will be produced at .28kWh
per square metre per day. To fuel an average Australian car via a 40% efficient fuel cell
would require approximately 183 square metres of panels, costing $137,000, plus
balance of system costs, plus the effect of the 8 factors listed above. Note that if the
electricity needs of the house were also to be supplied by the roof another 100 square
metres of panels would probably be required. The average house roof is probably under
100 square metres and therefore probably only about 40 square metres of it would be
suitably aligned for solar panels, i.e., about 1/7 of the required area.

Use of roof-top replacing PV panels would eliminate the approximately one-third of the
dollar cost of household electricity supply that is accounted for by distribution systems,
but only if complete independence from the grid is assumed. This would mean the grid
could not be used for "storage" and back up, and it would mean greatly increased
generating and/or battery capacity at the household level to cover cloudy periods. In
addition each house would have to have its own power conditioning equipment, e.g.,
inverter.

These considerations seem to decisively eliminate PV bulk supply of electricity on the
scale required to sustain industrial-affluent-consumer society, let alone to extend to the
Third World where most people average an income of under $2 per day. (The bulk
supply task would add the energy losses in inverting from DC to AC power, some 8%.)
The cost of a 1000MW solar plant located in a region like Central Australia, where solar
incidence is around 4.2Wh per square metre per day in winter, and capable of delivering
1000MW in winter would be some 55 times the cost of a nuclear plant or coal-fired plant
plus fuel for 20 years, again ignoring the nine additional factors noted above. (Trainer
1995a.) (A precise comparison would take into account the differences in capacity
factors, distributional costs and especially the costs of externalities. For coal
environmental costs have been estimated at c 40% of the retail dollar price.)

Ethanol

The other commonly discussed renewable transport fuel source is ethanol, about which
Hawken, Lovins and Lovins express complete optimism, again without discussing the
difficulties. They say, "Enough such biofuels are available to run a very efficient US
transportation system without needing special crops or fossil hydrocarbons." (p. 32.) In
fact they claim that from wastes alone enough ethanol for all could be produced. (p.
202.) Note that they also expect large scale use of hydrogen-powered fuel cells in
buildings to generate electricity, meaning much greater demand for fuel than cars would
create. (US electricity generation takes about as much primary energy as petroleum
consumption.)

However an examination of recent evidence indicates that there is far from sufficient
land to grow the quantity of biomass needed to produce the quantity of liquid fuel
presently used. Ethanol optimists such as Lynd (1996) and the recent draft Beyond 2000
Report (Foran and Mardon, 1999) make the very optimistic assumption of a 20-21
tonnes per ha yield of biomass, year after year, from very large areas. There are
locations where such yields are achieved. For instance sugar cane grows at 74 t/ha in
parts of the US. But there are relatively few such areas and if biomass is going to
replace petroleum extremely large areas of land will have to be used and the average
growth rates will inevitably be far lower, especially with constant annual cropping.

Consider the following average growth and yield rates. World forest, 1.5-2 t/ha/y. US
biomass and forest, 3 t/ha/y. US cropland, 6 t ha/y. Australian wheat (grain), 2 t/ha/y.
Australian fodder 3.5t/ha/y. Australian agricultural produce, excluding sugarcane, 2
t/ha/y. Obviously the agricultural figures refer to the best available land an large scale
use of other land would probably involve significantly lower yields.

Lynd (1996) and Pimentel (1984) state that about one third of the energy in biomass
feedstock could be converted to ethanol. (Lynd believes the maximum likely in future will
be 56%.) Foran and Mardon (1999) estimate that the methanol option (which in their
view has about 2.6 times higher energy yield than ethanol) could yield a net 40 gallons
of petrol equivalent per tonne of input. This aligns with Pimentel's estimate of 128
gallons of petrol equivalent per ha per year as the maximum likely. (This would
correspond to a photosynthesis rate twice the agricultural average.) Note that these are
gross figures; the energy needed to produce feedstock and ethanol from it would have
to be subtracted.)

US petroleum use is 277 billion gallons per year. (Youngquist, 1997, p 187, and U.S.
Department of Energy, 2000.) At 128 gallons per ha, 2164 million ha would be required
if this demand were to be met from biomass sources. (At 200 gallons of petrol per ha the
figure would be 1294 m ha.) US forest area totals 290 million ha, all cropland totals 190
million ha, pasture and grazing land 300 million ha, and total US land cover
approximately 900 million ha. (Note again that to replace both petroleum and gas would
multiply the magnitude of the task by 1.8.)

The contribution crop wastes and idle land could make is relatively small. Even taking
Lynd's high yield assumptions US idle cropland could only produce 1/7-1/4 of US liquid
fuel demand. (Lynd, 1991.) In another source Lynd reports that economically collectable
agricultural wastes might yield the equivalent of 11% of US petroleum consumption.
(Lynd 1966.) Crop and agricultural wastes are limited, energy-costly to collect, and
should be returned to the soil. (Pimentel 1994, p.6.)

The above figures align with the conclusion Giampietro, Ulgiati and Pimentel and come
to; "...none of the biofuel technologies considered in our analysis appears even close to
being feasible on a large scale due to shortages of both arable land and water...biofuels
are unlikely to alleviate to any significant extent the current dependence on fossil
energy..." (1997, p. 588.) Pimentel points out that present US energy use is 30% greater
than the total solar energy captured by all US vegetation. (Pimentel, 1998, p. 197.)

Hawken, Lovins and Lovins make no reference to any of these considerations and
difficulties regarding the two crucial energy forms for industrial-affluent society, viz.,
electricity and liquid fuel. When they are taken into account there is a strong case for
concluding that this fundamental assumption of Natural Capitalism regarding a problem-
free energy future is quite invalid. Note that the implications extend far beyond the
automobile. If there is a serious problem regarding energy supply those efficient carpet
recyclers will have difficulty getting to and from the offices in which they wish to replace
carpet tiles. Needless to say a serious energy supply problem would require complete
recalculation of many of the materials saving innovations Hawken, Lovins and Lovins
describe.

Natural Gas.

Hawken, Lovins and Lovins say gas is abundant and will last at least 200 years ( p. 37.)
Their claims regarding the availability of hydrogen and the potential improvement of
electricity generating efficiency rely on the use of gas turbines, and fuel cells. Gas is
also an important source of the polymers from which the hypercar is to be made,
although other sources can be used.

The view of the availability of natural gas taken by Hawken, Lovins and Lovins is sharply
contradicted by Campbell and Laherrere(1998) and several others (Duncan and
Youngquist, 1998, Ivanhoe, 1996, Fleay, 1995, Youngquist, 1997) who estimate that
world petroleum supply will peak around 2005-2015 and that world gas supply will peak
a little later. If the most optimistic (and controversial) estimates of petroleum resources,
from the US Geological Survey (2000), are taken the date of the peak is delayed only
about 10 years. (It should be noted that these USGs figures are not estimates of
quantities likely to be found; they are estimates of resources the could be found by
2030.) Fleay (1996) expects a 10 year plateau followed by a more rapid fall. The USGS
2000 estimates actually revise world gas Potentially Recoverable Resources down, to
be less than petroleum in energy content. As oil availability declines gas demand can be
expected to accelerate. Its use for electricity generation is rapidly increasing, leading
some to predict an electricity crisis before a petroleum crisis. However gas cannot easily
fill the gap as it is difficult and costly to transport long distances. Campbell et al expect
large price rises when the peak of petroleum supply is reached and begins to fall below
the demand curve which is presently rising at 2% p. a. By around 2025 Campbell
expects supply to be down to half the present amount. This volume would be only 1/15
of the amount needed to provide the present rich world per capita consumption to all the
people who will be living on earth in 2025. These geologists do not believe
unconventional resources, such as tar sands and oil shales, can solve the problem.
Campbell estimates that they can provide perhaps a steady 10 billion barrels p.a. for 70
years, compared with the 27 billion barrels used p.a. now.

There are therefore grounds for expecting a very serious liquid fuel problem within 20
years. with potentially catastrophic global consequences. (See www.dieoff.org.)
Hawken, Lovins and Lovins give no sense of concern about this issue, essentially
because of their faith in transition to renewable energy resources and their unsupported
and highly challengeable assumption that gas is abundant.

Now consider economic growth.

Simon and Hawken, Lovins and Lovins take for granted a growth economy. Natural
Capitalism provides strong reassurance that there will be no need to question this
society's fundamental commitment to constantly increasing the volume of economic
output, sales, business turnover and investment. Indeed it is claimed that better
technology can actually cut greenhouse gas emissions by 33% to 90% while the
economy grows by 500% to 700% (p. 244.), i.e., up to a factor 70 improvement.

There is now a detailed and persuasive case that industrial-affluent-consumer society is
grossly unsustainable being well beyond levels of resource consumption and ecological
impact that can be kept up for very long, or extended to all people. (Trainer, 1999.) Yet
the fundamental commitment within this society is to increasing production, consumption
and the GDP, constantly and without end. The task Hawken, Lovins and Lovins have set
themselves rapidly escalates when economic growth is assumed.

If 3% p.a. growth in output is assumed then the annual level of production and
consumption will be twice as great every 23 years. If all the world’s expected 9-10 billion
people were to rise to the per capita "living standards" the rich nations would have by
2070 given 3% growth, total world economic output would be more than 60 times as
large as it is today. For a 4% p.a. growth rate the multiple is more than 120.

These are the sorts of considerations which lead those within the "limits to growth"
school to conclude that there is no realistic possibility of sustaining industrial consumer
societies committed to economic growth. (Trainer, 1999.)

What about dematerialisation, and transition to a service economy?

Two common counter arguments here must be briefly considered. The first is the
assumption that economic growth will increasingly take place in the service and
information sectors and not in energy-intensive sectors such as mining, agriculture and
manufacturing. However, as has been noted above, many services are remarkably
energy-intensive. It is not plausible that an economy can treble or quadruple its service
activity without significantly increasing its demand for energy.

The second counter argument is that modern economies are "dematerialising", i.e.,
reducing the amount of materials and energy they require. Crude figures on "energy
intensity", i.e., energy consumed in the economy per unit of GDP, seem to confirm this.
However there are good reasons for concluding that this is misleading and that
dematerialisation is not taking place.

Firstly Gever et al. (1991) conclude that a significant proportion of the apparent effect is
due to change to fuels of higher quality, e.g., gas rather than coal. (More economic
value can be derived from a unit of energy in the form of petroleum than coal, or
electricity than gas, because the former sources are more flexible, transportable etc.)
Secondly there is a strong tendency for rich countries to increasingly import goods they
once manufactured, meaning that the energy used in their production is not tallied as
having been used in their economies. An examination of US trade figures provides
impressive evidence for this claim. (Adrianse, 1997, US Department of Commerce,
1995, Trainer, (in press.) This energy is taken into account when "emergy" accounting is
carried out. Finally, the amount of garbage thrown out would seem to be an important
indicator of the volume of materials and energy consumed and garbage generation per
capita in rich countries is not falling.

It is therefore not plausible that the economy of a rich nation could continue to increase
production and consumption at normal rates, for example rising to 8 or more times
present levels of output by 2070, without seeing its present energy consumption multiply
many times in coming decades.



Hence the "four level factor problem".

Those who believe with Simon and Hawken, Lovins and Lovins that it is possible to
retain an industrial-affluent-consumer society based on commitments to free market
principles and a growth economy are confronted by the need for reductions which
multiply across the following four levels.

Firstly, in view of the evidence of alarming depletion of many resources and ecological
systems, especially petroleum, forests, fisheries, the atmosphere, biodiversity,
agricultural land and water, it would seem that the present aggregate global resource
and environmental impacts and costs must be reduced dramatically before they become
sustainable. Let us assume that only a factor three reduction is needed. (The above
greenhouse and petroleum considerations indicate that factor 10 reductions are more
likely to be required.) In energy terms this would mean world energy use would have to
be cut to 2 billion tonnes of oil equivalent, and in view of the foregoing discussion even
this would be a highly problematic goal.

However at the second level we have to deal with the fact of extreme inequality in the
global distribution of wealth and resources. About 1 billion people in the rich countries
are taking about 3/4 of the resources produced each year, such as petroleum. The rich
world per capita average is about 5 times the world average. In other words those who
think technical fixes can make the present affluent-consumer-lifesltyles of the rich
countries possible for all people, in sustainable ways, are assuming that an overall 3x5
or factor 15 reduction in resource and ecological impact per unit of output can be made.
In energy terms sharing the the 2 billion tonnes of oil equivalent among 6 billion people
would provide about .3 tonnes per person, which is 1/15 of the amount per capita
consumed in rich countries today.

But, at the third level we realise that world population is likely to multiply by 1.5, to reach
9-10 billion. To provide this number with the present rich world living standard in
sustainable ways would therefore require a factor reduction of 3x5x1.5 or 22.5, i.e., to
.22 tonnes of oil equivalent per person.

At the fourth level we have to deal with the implications of economic growth. If we were
to add a mere 3% economic growth to the above considerations, then by 2023 when
output had doubled we would have to achieve a factor 45 reduction , and by 2046 a
factor 90 reduction, and we would have to go on doubling the figure every 23 years
thereafter. Hawken, Lovins and Lovins believe 3% growth can continue for 70 years,
given that they state that an 8-fold increase in economic output is possible. As has been
explained, rich world "living standards" would then be 8 times as great as they are now.
If 9 billion were to share those "living standards" world economic output would be about
60 times as great as it is now. Unless Hawken, Lovins and Lovins are only concerned
with guaranteeing high living standards to the few who now have them, they are obliged
to show how an approximately 180 factor improvement (3x5x1.5x8) in overall resource
use and environmental impact per unit of output is possible by around 2070.

It would seem clear therefore that the future for a socio-economic system based on
determination to retain high material "living standards", increase them over time, and
spread them to all people cannot be enabled by a mere factor 4 or factor 10
improvement in the efficiency of resource and energy use.

Many analyses have drawn attention to the savage implications of such multiples which
come with the assumption of growth. They are central in the extensive limits to growth
case that there is no possibility of all people ever rising to the "living standards" now
characteristic of the rich countries, that such countries are on a grossly unsustainable
path, and that the basic causal problem here is the commitment to an economy which
must have constant and limitless growth in production and consumption. (Trainer,
1995a, 1998, 1999.)

The ideological significance.

Simon and Hawken, Lovins and and Lovins deliver the news that most people are eager
to hear, from the government and corporate level down to the general public. They
provide authoritative reassurance that technical changes can cut resource and energy
costs sufficiently and that they can save the environment, all without any need to make
drastic reductions in "living standards" or economic output. In fact they tell us that
enormous growth in the economy, by a factor of 8 is quite possible. Indeed they
reassure us that while making these changes we can also make a lot of money.

Whatsmore, Hawken, Lovins and Lovins tell us that there is no need to resort to
government controls and social planning, because new technology will best introduced
by the market, since the firms which innovate will cut costs and prosper, and those
which don’t will become extinct. Thus Hawken, Lovins and Lovins provide strong
ideological support for one of the major premises of globalisation; the desirability,
indeed the rationality of deregulation and free market solutions.

The Alternative Perspective.

If the limits to growth analysis is correct in indicating that technical changes cannot
reduce resource consumption and environmental impact sufficiently then logically the
only other option is to try to move to lifestyles and systems which involve very low levels
of per capita economic output and resource consumption. While this is obviously far
from a politically acceptable option at present, a small but rapidly growing Global
Alternative Society Movement has emerged, based on radically alternative development
principles and goals of the kind that the limits analysis points to. "The Simpler Way"
(Trainer, 2000) involves acceptance of much less affluent lifestyles, a high level of self-
sufficiency in households, neighbourhoods, regions and nations, and therefore mostly
small local economies, more cooperative systems, use of alternative technologies, and
an overall economy which is not driven by market forces or the profit motive (although
there could be a place for these) and in which there is no economic growth. The
principles and current state of the Global Alternative Society Movement are detailed by
Douthwaite, (1996), Schwarz and Schwarz, (1998), and Trainer, (1995, 2000).
Approximately 1000 eco-villages are indexed in Federation of Intentional Communities
(2000), and Hagmaier et al., (2000).

Advocates of The Simpler Way insist that it need involve no deprivation or hardship or
reduction in high technology systems where these are socially beneficial, such as in
medicine. An essential concern is the elimination of unnecessary production through
simplified consumption and re-organisation of many functions. For example the
production of most food within and close to settlements, through "organic" processes
would eliminate most of the transport and other energy costs of food. Therefore many
urban roads could be converted to agricultural and other community uses, especially
development of commons such as orchards, forests, ponds, bamboo clumps, herb
patches and workshops.

The decentralisation of much of the necessary industry to small scale local sites would
enable many people to get to work on foot or by bicycle. The non-monetary sector of the
economy could be greatly enlarged, involving recycling, domestic production, "free
goods" from the commons, voluntary working bees and committees, and gifts and mutual
aid. Many people living in eco-villages find that the only need to work for money one or
two days a week while experiencing satisfactory material living standards via local
economies with large non-monetised sectors.

The Simpler Way seems better described as a form of classical anarchism, as distinct
from socialism; social control over the economy is assumed but mostly via local
participatory assemblies, as distinct from via centralised states.

More problematic than the need for a radically different economy would be the
acceptance of some values which clash with the Western tradition, notably the present
commitments to competition, individualism and acquisitiveness, and the conception of
progress. The prospects for achieving the simpler way are therefore not promising, but
its advocates argue that if the limits to growth analysis is valid no other general
conception of a just and sustainable world order is plausible. If industrial-affluent-
consumer society has so grossly overshot sustainable levels of production and
consumption that technical fixes cannot solve the resulting problems then a Simpler
Way of some kind must be the general solution. As has been noted, perhaps the most
unfortunate effect of Simon's and of Lovins' works has been to reinforce the impression
that there is no need to think seriously about the need for transition to The Simpler Way.



________________________________________________________________

Note 1. Some of the themes in this section have been discussed at greater length in
Trainer, 1986.

Note 2. Some of the following themes have been argued in more detail in Trainer,
1995a.

_________________________________________________________________

Australian Bureau of Statistics, (2000), www.abs.gov.au/ausstats

Campbell, J., (1997), The Coming Oil Crisis, Brentwood, England, Multiscience and
Petroconsultants.

Campbell, C. J. and J. Laherrere, (1988) "The end of cheap oil", Scientific American,
March, 60-66. (http://dieoff.com/page140.htm)

Corkish, R., (1999), Can solar cells ever recapture the energy invested in their
manufacture?", Photovoltaic Special Research Centre, University of New South Wales,
Australia.

Common, M., (1995), Sustainability and Policy, Cambridge, Cambridge University Press.

Douthwaite, R., (1996), Short Circuit, Dublin, Lilliput.

Duncan, R. C. and W., Youngquist, (1998), The World Petroleum Life Cycle, Seattle,
Institute of Energy and Man. (http://dieoff.com/page 123.htm)

Federation of Intentional Communities, (1995, 2000) Communities Directory, A Guide to
Cooperative Living, Langley, Fellowship for Intentional Communities.

Ferguson, A., (2000a), The Net Energy Capture of Photovoltaics, (Draft 1), UK,
Optimum Population Trust.

Ferguson, A., (2000b), Biomass and Energy, Optimum Population Trust, Jan.

Fleay, B. J., (1995), The Decline of the Age of Oil, Sydney, Pluto.

Foran, B., and C. Mardon, (1999), Beyond 2025: Transitions to the biomass-alcohol
economy using ethanol and methanol, CSIRO Resource Futures Program, Canberra

Gever, J., et al., (1991), Beyond Oil, Colorado, University of Colorado Press.

Giampietro, M., S. Ulgiati, and D. Pimentel, "The feasibility of large scale biofuel
production. Does an enlargement of scale change the picture", Bioscience, 47, 9, Oct.,
1997, 587-600.

Grindheim, B., and D. Kennedy, (1999), Directory of Ecovillages in Europe, Ginsterweig,
Germany, Global Ecovillage Network.

Hagmaier, S., J., Kommerall, M. Stengil, M. Wurfel, (2000), Eurotopia; Directory of
Intentional Communities and Eco-villages in Europe, 2000/2001, Poppau, Okodorf
Seiben Linden.

Hawken, P., A. B. Lovins, and H. Lovins, (1999), Natural Capital, London, Little Brown.

Ivanhoe, L. F., (1996), "Updated Hubbert curves analyse world oil supply", World
Oil,217, 11, Nov., pp. 91-94.

Kelly, H. C., (1993), "Introduction of Photovoltaic Technology", In T. B. Johansson, et
al., Renewable Energy, Washington, Island Press.

Lawson, Bill, (1996), Building Materials, Energy and the Environment: Towards
Ecologically Sustainable Development, Red Hill, A.C.T., Royal Australian Institute of
Architects.

Lynd, L. R., K. J. Cashman, Nichols and C. E. Wyman, (1991),"Fuel ethanol from
cellulosic biomass," Science, 251, 1318-1323.

Lynd, L. .R., (1996), "Overview and evaluation of fuel from cellulosic biomass," Annual
Review of Energy and Environment, 21, 403-465.

Meadows, D. H., D. Meadows and J. Randers, (1972), The Limits to Growth, New York,
Universe.

Odum, H. T., (1996), Environmental Accounting, New York, Wiley.

Pimentel, D., et al., (1984) "The environmental and social costs of biomass", Bioscience,
34,(2), 89-94.

Schwarz, W., and Schwarz, D., (1998), Living Lightly, London, Jon Carpenter.

Simon, J. L., (1981), The Ultimate Resource, Oxford, Martin Robertson.

Simon, J. L. and H. Khan, (1984), The Resourceful Earth, London Blackwell.

Trainer; F. E. (T.), (1995a), "Can renewable energy save industrial society?", Energy
Policy, 23, 12, 1009-1026.

Trainer, T. (F. E.), (1995b), The Conserver Society; Alternatives for Sustainability,
London, Zed Books.

Trainer, F. E. (T.), (1986(), "A critical examination of The Ultimate Resource and The
Resourceful Earth", Technololgical Forecasting and Social Change, 30, 1, 19-38.

Trainer, F. E. (T.), (1998), Saving the Environment; What It Will Take, Sydney,
University of NSW Press.

Trainer, F. E. (T.), (1999), "The limits to growth case now", The Environmentalist,

19, 4, Dec. 325 -336.

Trainer, F. E. (T.), (2000), current commercial figure Website;
http://www.arts.unsw.edu.au/socialwork/trainer.html



Trainer, F. E. (T.), (in press), "The dematerialisation Myth", Technology in Society.

U.S. Department of Commerce, (1995), Statistical Abstract of the United States,
Washington.

U.S. Department of Energy, (2000), Annual Energy Review,
www.iea.doe.gov/pub/energyoverview/1999

US Geological Survey, (2000), , USGS Reasseses Potential World Petroleum
Resources, News Release, 22nd March, 119 National Centre, Reston, VA 20192.

Weizacker, E. Von and A. Lovins, (1997), Factor Four, St Leonards, Allen and Unwin.

Younquist, W, (1997), Geo Destinies; The Inevitable Control of Earth Resources over
Nations and Individuals, Portland, National Book Co.

______________________________________________________________________
______


    The Simpler Way: Analyses of global problems (environment,
    limits to growth, Third World...)and the sustainable alternative
    society (...simpler lifestyles, self-sufficient and cooperative
    communities, and a new economy.) Organised by Ted Trainer.
    http://www.arts.unsw.edu.au/tsw/
	
 Previous Message All Messages Next Message 
  Check It Out!

  Topica Channels
 Best of Topica
 Art & Design
 Books, Movies & TV
 Developers
 Food & Drink
 Health & Fitness
 Internet
 Music
 News & Information
 Personal Finance
 Personal Technology
 Small Business
 Software
 Sports
 Travel & Leisure
 Women & Family

  Start Your Own List!
Email lists are great for debating issues or publishing your views.
Start a List Today!

© 2001 Topica Inc. TFMB
Concerned about privacy? Topica is TrustE certified.
See our Privacy Policy.